The realization space is
  [1   0   1   0   1    0             x1 - 2        x1 - 2               x1 - 2               x1 - 2        x1 - 2]
  [0   1   1   0   0    1             x1 - 2     -5*x1 + 2   2*x1^2 - 11*x1 + 6   2*x1^2 - 11*x1 + 6     -3*x1 + 2]
  [0   0   0   1   1   -1   -x1^2 + 6*x1 - 4   x1^2 - 2*x1     -x1^2 + 6*x1 - 4     -x1^2 + 4*x1 - 4   x1^2 - 2*x1]
in the multivariate polynomial ring in 1 variable over ZZ
within the vanishing set of the ideal
Ideal (x1^3 - 7*x1^2 + 7*x1 - 2)
avoiding the zero loci of the polynomials
RingElem[2, x1 - 1, x1^3 - 7*x1^2 + 8*x1 - 4, x1^2 - 7*x1 + 4, x1^3 - 8*x1^2 + 14*x1 - 6, x1^2 - 6*x1 + 2, x1^4 - 14*x1^3 + 57*x1^2 - 58*x1 + 20, x1^2 - 5*x1 + 2, x1^2 - 6*x1 + 4, x1 - 6, x1, 3*x1^3 - 21*x1^2 + 22*x1 - 8, 2*x1^3 - 15*x1^2 + 20*x1 - 8, 3*x1^3 - 21*x1^2 + 20*x1 - 4, 3*x1 - 2, 2*x1^3 - 16*x1^2 + 25*x1 - 10, 2*x1^3 - 15*x1^2 + 21*x1 - 6, 2*x1^3 - 15*x1^2 + 22*x1 - 8, 2*x1^2 - 13*x1 + 8, 2*x1^5 - 29*x1^4 + 136*x1^3 - 230*x1^2 + 162*x1 - 44, x1 - 2, 2*x1^5 - 28*x1^4 + 126*x1^3 - 199*x1^2 + 122*x1 - 24, 2*x1^5 - 28*x1^4 + 127*x1^3 - 208*x1^2 + 140*x1 - 32, 2*x1 - 1, 2*x1^5 - 27*x1^4 + 116*x1^3 - 171*x1^2 + 94*x1 - 16, 2*x1^3 - 14*x1^2 + 19*x1 - 6, 2*x1^3 - 15*x1^2 + 21*x1 - 10]